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Frustrated arrays of interacting single-domain nanomagnets provide important model 

systems for statistical mechanics, because they map closely onto well-studied vertex 

models and are amenable to direct imaging and custom engineering.   Although these 

systems are manifestly athermal, we demonstrate that the statistical properties of both 

hexagonal and square lattices can be described by an effective temperature based on the 

magnetostatic energy of the arrays. This temperature has predictive power for the 

moment configurations and is intimately related to how the moments are driven by an 

oscillating external field. 
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The physical meaning of temperature can be approached on several distinct levels. 

Macroscopically we have the intuitive notion of thermal equilibrium. Formally, 

temperature measures the variation of energy with disorder. In statistical mechanics 

temperature emerges as the Lagrange multiplier in an energy-constrained probability 

distribution of accessible microstates. Traditionally, a “thermal” system at equilibrium 

supports all three of these notions. Yet the concept of temperature has been extended to 

athermal systems, such as driven granular materials where the characteristic interaction 

energies greatly exceed the standard thermodynamic temperature [1-3] (often in the 

context of glassy transitions, jamming and rheology [4-7]) on the grounds that the large 

number of grains would still warrant statistical descriptions [8]. Effective temperatures 

have thus been introduced theoretically [9] and extracted from simulations of slowly 

sheared granular matter [10]. Recently, experimental observations of Brownian motion in 

vibro-fluidized grains have allowed a successful extraction of an effective temperature 

that increases monotonically with the magnitude of the vibratory external drive [11].  

These seminal results reflect the granular kinetics of systems interacting only 

through hard core repulsion and possibly friction, rather than the more complex 

interactions characteristic of microscopic systems and the models of statistical mechanics 

that describe them. In this Letter, we demonstrate that an effective temperature can be 

defined, extracted, used to make predictions, and related to external drive for a recently 

introduced nanometer-scale meta-material, ‘artificial spin ice’ [12-16].  In artificial spin 

ice, single-domain magnetic islands interact as Ising-like spins, thus allowing an energy-

based definition of temperature in a system that can be engineered to replicate the 



3 
 

celebrated vertex models of statistical mechanics [17-19] and whose microstates can be 

directly imaged. 

Our artificial spin ice system is a two-dimensional array of elongated single-

domain permalloy islands (80 x 220 x 25 nm, with a magnetic moment ~ 107 µB) whose 

shape anisotropy defines Ising-like spins arranged along the sides of a regular lattice. The 

microstate of island moments in this system can be directly imaged via magnetic force 

microscopy (MFM) [12, 20], a decided advantage over naturally occurring magnetically 

frustrated materials [21-24]. The island moment configuration is not in thermal 

equilibrium with the surroundings, since the magnetostatic interaction and anisotropy 

energies of the islands are ~105 K, and thus thermal excitations cannot induce spin flips. 

However, as for granular systems, the large number of islands suggests the viability of 

statistical treatments if fluctuations can be activated by an external drive. Artificial spin 

ice can be driven into a low-energy, interaction-dominated state [12, 20, 25, 26] by 

rotating the sample in a decreasing magnetic field. In our experiments, the field decreases 

from 2000 Oe (far above coercive field) to 0 in steps of Hs, holding each step for 5 

seconds while the sample rotates at 1000 rpm, with a reversal of field direction at each 

step. This demagnetization protocol was implemented for a range of field step sizes (Hs = 

1.6, 3.2, 9.6, 12.8, 16, 32 Oe) and for two lattice geometries, square ice and hexagonal ice, 

as depicted in Fig. 1. We studied arrays with a range of different lattice constants, and 

each data point in figures 2-4 represents three or more MFM images, each spanning 

several hundred islands. 

The dominant interactions in the lattice occur between neighboring islands across 

a given vertex. Hence we follow a previously established approach, [12, 26, 27] and 
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describe the data within a vertex model [19] wherein the system is described in terms of 

populations of distinct vertex types, each with a given magnetostatic energy. Square ice 

has 4 topologically distinct vertex types, which we call Type I, II, III, IV, with 

multiplicities , , ,  as defined in Figure 1. We call the 

magnetostatic self-energies of these vertices EI, EII, EIII, EIV with fractional populations 

, , , ; these can be extracted from MFM images. The specific vertex energy 

is then simply . Hexagonal ice has just two vertex 

topologies of multiplicity , with specific vertex energy . 

The two lattice geometries have very different entropy vs. energy relations within the 

vertex model: square ice has a two-fold ground state of anti-ferromagnetically tiled Type-

I vertices, whereas hexagonal ice has an extensively degenerate ground-state tiling of 

Type-I vertices with a substantial residual entropy. Both lattices support negative 

temperatures at the highest specific vertex energies, since the highest-energy 

configurations are well-ordered Type-IV (square) or Type-II (hexagonal) tilings. Perhaps 

not surprisingly, these two lattices behave differently under AC demagnetization: square 

ice never finds (or closely approaches) the ground state, whereas demagnetized 

hexagonal ice returns the vertex-model ground state with at most sparse type-II 

excitations. 

We first consider the case of the square ice arrays, where we have studied lattices 

with lattice constant a = 400, 440, 480, 560, 680 and 880 nm. The external field in our 

rotational demagnetization is initially strong enough to coerce every island into following 

the external field. As the magnitude of the external field is decreased, successive islands 

presumably begin to “fall away” from the external field, locked in by favorable 
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magnetostatic interactions with their neighbors. Although not ergodic, the accumulation 

of these distinct “defects” carved in the initial uniform set of aligned type-II vertices 

generates a well-defined statistical system. In an isotropic, vertex-gas approximation, 

where each vertex is treated as an independent entity, there are  

ways to choose D defected vertices among the N vertices of a given lattice, each allocated 

among the four vertex types according to a distribution Nα , α = I,…,IV. Calling ρ = D/N 

and υα = Nα /N, we maximize S = lnM under a vertex-energy constraint on the ensemble 

of defected vertices, or  where 

 is the “entropy” of the defected ensemble. We obtain a canonical 

distribution for the defects 

     (1) 

as well as the expression for the auxiliary quantity  

    (2) 

Eqs 1, 2 can provide the actual vertex populations as 

   (3) 

We compute the vertex energies using a “dumbbell” model (as in ref [28]), in which the 

magnetic dipole is treated as a finite-size dumbbell of monopoles, and we consider only  

interactions between monopoles converging in each vertex: energies then scale as 

 (where  is the lattice constant and  the length of the islands). By imposing 
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one finds and  In this 

simple dumbbell model of the energetics, the ratios between different vertex energies are 

independent of the array lattice constant. 

As a simple test of basic assumptions of the above model [1], we consider the 

quantities  and   as deduced from the measured nI, nII, and nIII.  

These quantities should be proportional to the reciprocal effective temperatures  

and , since the formalism is well approximated by a purely canonical distribution 

which assigns an anomalous multiplicity of 5 rather than 4 to Type-II vertices. In figure 2, 

we plot these two quantities against each other, and a linear fit returns EII/EIII = 0.441, 

very close to the expected theoretical value  

obtained from the dumbbell approximation. 

In Figure 3a, we plot the experimentally observed populations of each vertex type 

vs. the effective reciprocal temperature extracted from the fraction of type III vertices via 

 The figure includes data from square arrays with all of our different 

lattice constants and annealed at all of our different step sizes.  For comparison, we also 

show theoretical curves for the vertex populations as a function of the effective 

temperatures, based on Eq. 1-3.  The excellent agreement between theory and the 

experimental data demonstrates that the derived effective temperature has good predictive 

power, despite the crudity of the vertex gas approximation.  

Is the effective temperature derived above only a mathematical artifice (i.e. just a 

Lagrange multiplier within maximum likelihood), or does it provide physical information 

about the environment within which the system resides (i.e. the “fluidizing” external 
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magnetic drive), as an actual physical temperature provides information about the 

surrounding thermodynamic bath? We found that the effective temperature of the square 

ice arrays can be controlled via the external drive in a way strikingly analogous to that 

reported for vibro-fluidized granular materials [11]. As seen in Figure 3b, we find a 

strikingly linear dependence of  in the magnetic step-size of the AC demagnetization, 

indicating that the effective temperature description does indeed have a physical basis 

akin to a microscopic temperature. 

We now consider the effective temperature of the hexagonal ice arrays, in which 

AC demagnetization consistently returns the vertex ground state (all type I vertices) for 

arrays of small lattice constant.  For a = 225, 260, 320, 425 nm, the frequency of 

excitations is ~10-3, below experimental error.  Hence hexagonal ice is a good candidate 

to study effective temperature only for larger lattice constants, a = 650, 910, 1135, 1395, 

1620 nm, in which the occurrence of excitations is measurable.  As the density of 

excitations completely defines the thermodynamics, the introduction of an effective 

temperature of the same sort as for the square ice, βeEII = ln (nI/3nII) might seem only a 

re-parametrization with little predictive power. In Figure 4a, however, we extract 

from arrays of different lattice constant a, but annealed with the same 

magnetic step Hs, and plot that ratio against the respective energy EII. Somewhat 

surprisingly, we find a linear behavior that suggests an effective temperature that is 

independent of the lattice constant. In this calculation, the vertex energies are obtained 

via micromagnetic calculations that describe the full vertex interaction of dipole islands 

[29], since we now study much larger lattices for which the dumbbell approximation 

(which treats only the monopole tips that converge at a vertex) is less accurate. The 



8 
 

intercept of the fits in Figure 4a is surprisingly close to the expected , 

lending further credence to the analysis.  The extracted effective temperature, , is 

plotted in Figure 4b against the magnetic step-size Hs.  As in the case of the square ice, 

we again find a remarkable linear dependence of on the anneal step size Hs, although 

with different parameters (different geometries apparently experience different effective 

temperatures under the same magnetic drive).   These results confirm the physical nature 

of the effective temperature and that it can be generalized to multiple geometries of the 

artificial ice systems, although the exact reason for the linearity in Hs is not obvious. 

In conclusion, we have introduced a predictive notion of effective temperature in 

a complex interacting granular system of magnetostatically interacting nanomagnets.  

Unlike previously explored non interacting granular materials, these arrays can be 

engineered to reproduce known models of statistical mechanics, and the interactions can 

be controlled by design.  We have found that the external drive, in the form of an 

agitating magnetic field behaves as a thermal bath and controls the temperature. The 

formalism successfully predicts microstates on a wide spectrum of different energies and 

vertex populations. 

This work was carried out under the auspices of the National Nuclear Security 

Administration of the U.S. Department of Energy at Los Alamos National Laboratory 

under Contract No. DE-AC52-06NA25396 and also supported by the Army Research 

Office and the National Science Foundation MRSEC program (DMR-0820404) and the 

National Nanotechnology Infrastructure Network. We are grateful to Prof. Chris Leighton 

for the film deposition. 
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FIGURE CAPTIONS 

Figure 1: Square and hexagonal artificial spin ice. (a) schematics (top-left) and MFM 

(top-right) of the square arrays, along with the 16 vertices of the square artificial ice 

(bottom) and (b) schematics (top-left) and MFM (top-right) of the hexagonal arrays with 

the 8 vertices of the hexagonal.  The white arrows on the schematics show the vertex 

ground states of the two lattices, and the percentages indicate the vertex multiplicity for a 

random moment configuration. 

 

Figure 2: The effective temperature of the square arrays, plotted as  vs. 

: the linear fit returns a ratio very close to the theoretical value. The values 

of nI, nII and nIII are all average values obtained from the MFM images taken on the same 

array and at same step size. 

 

Figure 3:  (a): Vertex frequency from square arrays of different lattice constant and 

obtained with different Hs plotted against their effective reciprocal temperature in 

units of EIII. The data are obtained by averaging the results of at least three MFM images 

from the same array with the same demagnetization step size. The error bars show the 

variation within the same array. The lines are theoretical curves from Eq. 1-3.  (b): Linear 

dependence of as a function of the magnetic step size (data are averaged over the 

lattice constant a). 

 

Figure 4: (a): Linear fits of for the hexagonal arrays vs. the energy EII, for the 

larger lattice spacings as discussed in the text. The intercept falls very close to the 
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expected multiplicity  (i.e., ln3 since the graph plots the logarithm); (b): Linear 

dependence of as a function of the magnetic stepsize: was obtained from the fitting 

slope in (a).  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4   
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